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The defect structure of MgO containing trivalent 
cation solutes: shell model calculations 
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We have used the HADES program to calculate the energies of various defect aggregates 
found in MgO containing AI 3+ and Fe 3+ solutes and compensating cation vacancies. Calcu- 
lated energies of substitution are compared with heats of solution derived from phase- 
diagram data; from the accuracy of these results, we deduce the validity of the models 
used for the lattice simulations. We find that our models provide a satisfactory descrip- 
tion for AI 3+ but are a less precise representation of crystals containing Fe3+; the models 
used, however, bracket a reasonable range of solute behaviour and important trends are 
unaffected by reasonable changes in the interionic potentials. The simplest vacancy- 
solute dimer can have either a (1 00) or (1 1 0) orientation; the two constituent defects are 
closest when the dimer has a (1 1 0) axis, but the (1 00) dimer is more stable because of 
the large displacement and polarization of the oxygen ion between the trivalent ion and 
vacancy. Trimers with either orientation are about twice as stable as the corresponding 
dimers. Complex aggregates of solutes and vacancies, which adopt configurations that 
form nuclei of the mixed-oxide spinel structure, are even more stable and the stability 
increases with cluster size. Thus we conclude that such clustering is an important 
phenomenon at low homologous temperatures. Calculated interstitial formation energies 
in MgO are large (> 10 eV) and our results for the activation energies for solute motion 
are of the order of 2eV. 

1. I n t r o d u c t i o n  

A detailed knowledge of defect structures is 
important for understanding the physical proper- 
ties of crystalline ceramic materials. It is necessary 
both to identify the species present and to charac- 
terize the equilibria between them. The appropri- 
ate equilibrium constants in the usual mass-action 
formalism depend on the changes of enthalpy and 
entropy accompanying point-defect creation or 
aggregation. However, experiments aimed at deter- 
mining these quantities for oxides of technological 
importance (in this paper we consider MgO) are 
difficult to perform and interpret. Thus, even 
where there exist experimental estimates of defect- 
associate binding energies, the values are unreliable. 

Calculations of the free energies of various 
plausible defect configurations would aid the 

interpretation of the properties of imperfect 
crystals. Such theoretical modelling of materials 
can, of course, consider various possible defects 
and defect aggregates and thus indicate which are 
the significant participants in the defect chemistry. 
However, the calculation of the non-configurational 
defect entropies is extremely difficult; it requires 
the determination of the local vibrational modes 
of the imperfect lattice. Thus it is only recently 
that there have been serious attempts at calcu- 
lations of defect entropies for ionic materials [1]. 
This lack of reliable entropies is a serious defic- 
iency in theoretical analyses of defect chemistry. 
However, because the temperature variation 
of the mass-action equilibrium constants depends 
only on the defect energies, if as usual both 
energies and entropies do not themselves depend 
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explicitly on temperature, then calculated defect 
energies alone are of great value in interpreting 
experimental work. 

Recent studies [2] have established appropri- 
ate models and improved methods for calculating 
the energies of defects and defect aggregates in 
ionic materials; this experience is realized in the 
HADES computer program (Harwell Automatic 
Defect Evaluation System) of the Theoretical 
Physics Division of the UKAEA Research Lab- 
oratory at Harwell. This paper reports such cal- 
culations of the interaction energies of  trivalent 
cation solutes with cation vacancies in MgO. The 
work has two objectives. First it seeks to provide 
self-consistent and plausible energies of formation 
and association of various point-defect configur- 
ations where at present none are known. We can 
compare such results with experimental heats of 
solution for the trivalent solutes�9 Such ener- 
gies can be used in reliable calculations, within the 
conventional mass-action formalism, of the con- 
centration of many different defects in the MgO 
crystal as a function of temperature, impurity con- 
tent and oxygen partial pressure�9 Second, this 
study investigates more complex aggregates of 
impurities and vacancies, with conjectural but 
plausible configurations inferred from the known 
structures of mixed spinel oxides of magnesium 
and trivalent ions. Such complexes may have a 
profound effect on the overall defect behaviour. 

2. Background 
There is little doubt that association between 
charged point defects occurs in magnesia�9 A vari- 
ety of impurity-vacancy* centres have been 
identified which involve anion substitutionals such 
as F-  [3, 4] and OH- [5, 6]. Impuri ty-impuri ty 
centres involving pairs of tri- and monovalent sub- 
stitutionals such as (CrMg .... Li~ag) =* have also 
been suggested [7]. The defect structures produced 
by the trivalent solutes A13§ Fe 3§ and Cr 3+ and 
quadrivalent Mn 4§ are of particular interest, how- 
ever, either because such solutes are often present 
in substantial quantities in single-crystal specimens 
of magnesia (A13§ Fe3+), or because they are 
amenable to detailed study with optical and reson- 
ance techniques (Fe 3§ Cr 3§ Mn4§ 

Early work [8-10]  established that the chromic 
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Figure 1 Two possible orientations of impurity-vacancy 
dimers in MgO (shown with Fe3+). Trimers are theobvious 
linear extension of the dimers. 

ion enters the MgO lattice substitutionally on 
cation sites. Cr 3§ w a s  either found in a purely 
cubic environment or was observed [8-10]  to 
occupy tetragonal ((100) axis) and orthorhombic 
((1 1 0)axis) sites; these latter defects are present 
in smaller numbers than the former. Because of 
the low concentration of other possible compen- 
sating agents, these defects were ascribed [8, 10] 
to (100) and (110) solute-vacancy dimers, 
respectively (Fig. 1). Imbusch e t  al. [11] studied 
the tetragonal centre by observing the changes in 
the luminescence spectrum produced by the appli- 
cation of uniaxial stresses, demonstrating con- 
clusively the (100) axis of symmetry. The nature 
of the luminescence indicated a defect of  odd sym- 
metry, and the (100) dimer, (CrMg--O--V~g)' , 
was suggested. These workers also reported lines 
which they attributed to the linear neutral (100) 
trimer analogous to the dimer, ( C r M g - O - V ~ g -  
O-Crhg)= �9 

Glass [12] further investigated the luminescence 
of magnesia doped with 75 ppm chromium as a 
function of heat-treatment in the temperature 
range 400 to 900 ~ C. The assignments of spectral 
lines to (100) dimers and trimers by previous 
workers [8-11] were adopted and, on the basis of 
semi-quantitative arguments, various weaker lines 

�9 t t  P 

were attributed to a (I 10) dimer (CrMe--VMg), 
and a non-linear trirner. By assuming that the con- 
centration of a given defect was proportional to 
the intensity of the luminescence line, Glass [12] 
was able to analyse his data as a function of tern- 

*Unless otherwise indicated, "vacancy" should be understood as "cation vacancy." 
~Kroger-Vink notation for defects will be used throughout this paper. Readers unfamiliar with the conventions are 
referred to a general review such as that given by Kingery et  al. [58], Ch. 4. 
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perature in terms of the mass-action equilibrium 
expressions for the various associates. The (11 O) 
dimer was found to be energetically more stable 
than its (100) counterpart (i.e. AE for the former 
is more negative). However, the pre-exponential 
factor of the (110) defect is more than two orders 
of  magnitude less than that of  the (100) defect, 
accounting for Glass' observation that the (1 0 0) 
associates are present in greater concentration than 
the (110). An examination of Figs 7 to 9 of [12] 
shows that, with the exception of the formation 
of the (100) trimer from the (100) dimer, the fit 
of the data to a simple mass-action defect model is 
not completely convincing. The effects of other 
aliovatent impurities* were not fully considered, 
but are certainly important (particularly at low Cr 
concentrations). The identities of the centres pro- 
ducing some of the weaker lines remain open to 
question, and in fact some very weak Tines were 
not assigned. It is also curious, for example, that 
the (110) trimer does not appear; one would 
expect, too, that larger clusters might form at the 
low temperatures used. Anomalous behaviour of 
the luminescence spectrum above 900~ remains 
to be explained. Thus, although by no means 
definitive, Glass's [12] study is nevertheless an 
important attempt to account for the behaviour 
of a variety of defect centres in terms of mass- 
action relationships. 

In a parallel study of Cr 3+ in MgO, Wertz and 
Auzins [13] studied the ESR spectrum of Cr 3+ and 
also found two sets of centres having tetragonal 
and orthorhombic symmetry. One set, termed T 
and R, was attributed to the expected dimers hav- 
ing (100) and (1 l 0) orientations. The second set, 
termed T' and R', was associated with linear 
neutral trimers having (100) and (110) axes, 
respectively, and involving a second trivalent 
impurity, perhaps A1 a§ Henderson and Hall [7] 
also studied the T' centre, but make no mention of 
defects of orthorhombic symmetry. The tempera- 
ture behaviour of  the ESR spectrum observed by 
Wertz and Auzins [13] suggests that larger clusters 
of solute ions may form at temperatures below 
about 700 ~ C t over a period of several days. 
Assuming an effective diffusion coefficient of 
10 -17 to 10-1Scm2sec -~ and a diffusion distance of 
100A ([Cr] ~ I00ppm),  this is not unreasonable. 
Magnetic susceptibility measurements [14] on 
polycrystalline samples of magnesia containing 

* Fe, 200 ppm; A1, 50 ppm; Mn, 100 ppm; Si, 50 ppm. 
t The Cr concentration of the sample is not given. 

0.9% Fe 3+ have indicated that clusters containing 
as few as six solute ions can form, even in speci- 
mens quenched from 1400 ~ C. 

The Mn 4+ ion has been studied by a number of  
workers [6; 7, 15] and, like Cr 3+, it enters the lat- 
tice substitutionally. Only a tetragonal centre has 
been reported in addition to purely cubic Mn 4+ 
and this is attributed to the neutral (100) dimer; 
but Henderson and Hall [7] suggest that a substi- 
tutional monovalent ion might be the compensat- 
ing agent, 

Iron also enters the magnesia lattice substi- 
tutionally [16, 17] and usually occurs as Fe 2+ or 
Fe 3+, although Fe + may be produced upon irradi- 
ation [18]. The relative amounts of  ferrous and 
ferric iron may be changed by heat-treatment [16]. 
Henderson e t  al. [19] studied the EPRspectrum of 
the ferric ion in magnesia and observed a tetragonal 
centre which they identified as the (1 0 0) dimer. 
A weaker set of lines was tentatively assigned to 
the (110) dimer. 

Unruh e t  al. [20] studied the ESR and ENDOR 
(electron nuclear double resonance) spectra of  the 
trapped hole V- centre previously investigated by 
Wertz and co-workers [18, 21,22]. On the basis of  
the ENDOR spectrum, they suggest that the centre 
is, in fact, an aluminium-vacancy associate having 
a (100) axis of symmetry. The half-life of the 
centres (10h at room temperature) is in accord- 
ance with this assignment, as are the dramatic 
increases in both ESR and ENDOR signals with 
the aluminium content of the crystals. It is import- 
ant to note that these workers infer the presence 
of a compensating vacancy both from impurity 
spectra and from direct observations on a vacancy 
centre. This is in contrast to previous studies 
which infer the presence of the vacancy on the 
basis of  observations only on the impurity. 

This survey indicates the narrow limits to our 
knowledge of the structure and stability of impur- 
ity defects in MgO; the data on impurity migration 
is even more restricted. Thus tracer diffusion coef- 
ficients of A13+ and Fe 3+ have not been measured 
in magnesia, but experiments with other cation 
impurities with valences of + 2, + 3 and + 4 are 
consistent in yielding small (10-4cm=sec -1) pre- 
exponentials and modest (2 eV) energies of  acti- 
vation [23]. This information, as Wuensch [23] 
points out in his general review, indicates that the 
tracer diffusion of cation impurities is extrinsic 
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and the observed activation energy is that for ionic 
motion. Interdiffusion studies in the MgO- 
MgA1204 system [24] yielded an activation energy 
for self-diffusion of A13§ in MgO of 3.3 eV. Using 
luminescence techniques, Glass and Searle [25] 
studied the migration of the (CrMg-O-V~g)'  
associate and deduced an activation energy of 1.73 
eV.* More recently, Weber et al. [26] found an 
activation energy of 2.8 eV for chromium self- 
diffusion in single-crystal specimens containing a 
total of 250 ppm aliovalent impurity. Diffusion in 
samples doped with chromium, however, showed 
activation energies of only 1.2 eV [26]. The origin 
of this discrepancy is not clear, and the possibility 
of such concentration-dependent effects makes the 
interpretation of experimental activation energies 
difficult. 

We can now usefully summarize our survey, 
which though brief and selective, is also represen- 
tative. Almost all of the work supports a few basic 
generalizations: (1) a number of different cation 
impurities (Fe 3+, A1 s+, Cr 3+, Mn 4+) behave in a 
similar way in magnesia, forming analogous associ- 
ates; (2) available data are consistent with a variety 
of aliovalent impurity-vacancy associates, includ- 
ing dimers and trimers oriented along either a 
(1 10) or (100) axis; (3) defects having a (100) 
axis of symmetry are observed to predominate 
over those with a (110) axis, so much so that evi- 
dence for orthorhombic ((110)) centres may be 
termed sketchy; (4) larger, more complicated 
clusters may have a substantial effect on the defect 
equilibria at low temperatures; (5) activation 
energies of motion for cation impurities are, with 
few exceptions, of the order of 2 eV. Despite this 
general broad consensus, it is fair to state that a 
detailed experimental knowledge of solute behav- 
iour at the microscopic level in magnesia remains 
limited and, in some respects, confused. This situ- 
ation makes the use of lattice calculations desir- 
able both for a qualitative clarification of what 
defect configurations are stable as well as for a 
quantitative determination of their energies of 
formation. 

3. Calculations and lattice models 
3.1. Calculations 
The Harwell  A u t o m a t i c  Defect  Evaluation S y s t e m  

(HADES) is a versatile and efficient program which 
uses the shell model [27, 28] to evaluate defect 
energies in ionic solids; we discuss details of the 
lattice models in the next sections. Details of the 
method of calculation are found elsewhere 
[29-32] and we give only an abbreviated outline 
of the basic features of the program, sufficient for 
an understanding of the results presented here. 

Conceptually, the HADES scheme is straight- 
forward. The lattice displacements, dipoles and 
energies are evaluated exactly and explicitly in the 
region immediately surrounding the defect (region 
I), since this is the region in which most of the dis- 
tortion occurs. Far from the defect (region II) 
only the net monopole field due to the defect is 
important in determining the displacements and 
dipoles; this contribution to the energy of the 
defect is thus a monopole-dipole term which has 
the form �89 where Q is the net defect charge 
and V is the potential at the defect due to the 
induced lattice polarization.t To minimize errors 
that come from applying different techniques 
in the two regions, a "buffer" zone, IIa, is 
provided to include explicit interactions be- 
tween region I and the inner part of region II. 
The total energy is then the sum of these three 
energies. This approach yields results which are 
equivalent to those obtained using less efficient 
techniques [2]. 

3.2. Lat t ice models  
The shell model used in these calculations provides 
a generally satisfactory description of the elastic 
and dielectric properties of ionic solids and is 
adequate for defect calculations. In this model, 
each ion is represented by a charged core and shell 
which are coupled harmonically; the displacement 
of core and shell represents the ionic polarization. 
The repulsive overlap interaction between closed- 
shell ions acts between the ion shells and there is, 
in consequence, a coupling between the overlap 
interactions and ionic polarization. This coupling 
is necessary to account for the observed dielectric 
properties of the crystal. It is omitted from simpler 
descriptions of ionic crystals such as the polariz- 
able point-ion model. 

The magnitudes of the various interactions in 
the shell model are conveniently fitted to bulk 

*Their analysis is too simplistic, however, since at least two types of jumps are required for the motion of the dimer. 
]'Catlow e t  al. [2] found that the inclusion of the elastic displacement field has a negligible effect on the calculated 
energies of vacancy formation. Consequently, it was ignored here. Elastic displacements are of major importance, 
however, in the calculation of  dislocation energies [33, 34].  
2 0 5 6  



lattice properties; Catlow et al. [2] have developed 
two shell models for MgO and calculated vacancy 
formation energies. In these models, the total ion 
charges (the sum of core and shell charges) were 
set to + 2 and - 2. The anion core-shell coupling 
constant and the magnitude of the anion shell 
charge were determined by fitting to the dielectric 
constants eo and e= and the transverse optic fre- 
quency co T ; the cations are unpolarizable. 

The cation-anion overlap repulsion was repre- 
sented by a Born-Mayer potential q~+R_(r)= 
A+_ exp (--r/p+_) where the parameters A+_ and 
p+_ were fitted to elastic data for MgO and the 
lattice stability condition;this potnetial acted only 
between nearest-neighbour ions. The anion-anion 
interactions, however, are essentially attractive. 
Even if a conventional estimate of the oxygen-  
oxygen van der Waals interaction is added to a 
Born-Mayer overlap potential and if this is then 
fitted to crystal data, the Born-Mayer term is still 
attractive. This phenomenon is discussed and con- 
sidered in detail in recent papers [36, 37] that pro- 
pose more sophisticated potentials for ionic cry- 
stals. The simplest acceptable solution to this 
difficulty, however, is to supply a calculated 
estimate of the repulsive part of the second- 
neighbour interaction and then fit the van der Waals 
parameter C__ in the complete anion-anion 
potential V(r) = A__ exp (--r/p__) - -C__/r  6 . How- 
ever, 0 -2 is not bound and Catlow et  al. [2] were 
obliged to use a calculated O - - O -  overlap poten- 
tial in place of the actual interaction between 0 -2 

ions; this is probably a reasonable approximation 
at close interionic separations. This composite 
anion-anion potential then acts only between 
nearest pairs of oxygen ions. Cation-cation inter- 
actions are very small and they were omitted from 
the model. 

The short-range potentials thus incorporate 
three unknown parameters, A+_, p+_ and C__; 
these were fitted to elastic data and the lattice 
stability condition for MgO. Because the shell 
model is not a complete description of MgO, this 
fitting procedure is not uniquely defined. The shell 
model, with only central pair potentials, can repre- 
sent a crystal only with C12 = C44; data for MgO 
do not satisfy this Cauchy condition. A harmonic 

T A B L E  1 MgO model parameters (model 1) 

(a) Repulsive potential  

rb R = A i ]  exp (-- r/Pij)  

Interaction A (eV) p(A-') 

Mg=*-O 2- 1 152.0 0.3065 
02-_ 02- 22 760.0 0.1490 

(b) Van der Waats potential 

(pi~ d w = --- c i j / I r i j J  6 

Interaction c 

O2--O 2- 28.96 

energy due to an isotropic distortion of the anion 
shell has been used to provide a priori a calculated 
difference between C12 and C44. The effect on cal- 
culated defect energies is small [2, 38], and the 
"breathing" terms are perhaps more important in 

the description of lattice dynamics [39] and the 
calculation of dislocation phenomena [33, 34]. 
The breathing terms do not influence the values of 
the shear moduli C44 and C~1-C12; the preferred 
model of Catlow et  al. [2] was, therefore, fitted to 
these data and to the lattice-stability condition. 

The model of MgO used in this work is the pre- 
ferred model of Catlow et  al. [2]. The potential 
parameters are collected in Table I; the values of 
the crystal data calculated (--r/p+_) model are 
compared with experiment in Table II, There is a 
good representation of the dielectric properties of 
the crystal, and recent experience indicates that 
this is essential for calculating reliable energies of 
charged defects in ionic crystals. Catlow et  al. [2] 
also showed that their results for vacancy energies 
in MgO are robust against significant changes in 
the model. The use of  an alternative model, with 
the same potential parameters fitted to Cll and C12 
separately, produced some variation in the separ- 
ate formation energies of cation and anion 
vacancies, but the physically significant Schottky 
energy was almost unchanged. This suggests that 
relative defect energies* are largely independent 
of the crystal model used as long as it describes 
the materials properties at least approximately. 

We thus believe that the physically significant 
defect energies considered in this paper are not 
dependent on the limitations of  the lattice model. 

*Absolute energies of  defect  format ion are the energy changes when defect  consti tuents which are added or removed 
from the perfect  crystal are brought up from or are taken to the zero of  energy at infinity. Relative energies are dif- 
ferences between absolute energies. Thus, the binding energy of  a complex associate with respect to its separated con- 
stituents is a relative energy. 
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T A B L E  II  Crystal constants  

Quant i ty  Calculated Exper imenta l  

E e (cohesive energy) --  40.87 eV -- 40.06 

e~  2.96 2.95 

e o 9.86 9.65 -- 9.86 

C H 3.555 X 1012dyncm -2 2.892 • 1 0 ~ d y n c m  -2 

C~z 1.547 X 1012dyncm -2 8.80 • 1 0 " d y n c m  -2 

C44 1.547 X 10~2dyncm -= 1.546 • 10~2dyncm -2 

C ~ - - C ~ 2  2.008 • 10~2dyncm-2 2.012 X 10~2dyncm-2 

a o (lattice constant)  - 2.106 A 

They are, however, much more influenced by 
choice of the potentials describing the impurity 
lattice interaction. 

3.3. The  impur i ty  lat t ice in te rac t ion  
A problem of major importance is determination 
of the proper cation solute-oxygen repulsive 
interactions in the MgO host lattice. As will be 
seen in the following section, these terms have a 
significant effect on the calculated binding energies 
for the associates of interest. Since our observation 
is that the anion-cation repulsive interaction is 
dominant, a reasonable approach is to use poten- 

I0 2 

> 

IO 

r  

rials which adequately describe the pure solute 
oxide. Thus, the AI3+-O z- potential used was 
taken from the recent shell model calculations of 
Dienes et  aI. [40] for A1203. This set of param- 
eters, calculated using a Wedepohl [41] technique, 
describes the bulk modulus and cohesive energy of 
alumina fairly well within the context of a crystal 
model similar to that of HADES. The Dienes 
potential, however, does not fit the simple Born-  
Mayer form over a wide range of separations (Fig. 
2). Since HADES has no provision for such non- 
linearity, a single approximate potential was 
obtained for separations in the range 1.5 to 2.54 A. 
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Figure 2 Plot of the Born -Mayer  poten- 
tials for AI3*-O 2- and Fe3*-O 2- inter- 

actions. Potentials of Dienes et al. [401 
provided for comparison. 



T A B  LE l l I  Born--Mayer  parameters  for i m p u r i t y -  
oxygen interactions 

Interaction A(eV) p ( A - ' )  

Fe > -O =- 702.29 0 .3362 
Fe2+-O > 745.30 0 .3362 
A P + - O  ~- 1000.00 0.3325 

Ion Radius (A) 

t"e > 0.82 
Fe 3+ 0.7 - 0 . 8  

AP  + 0.57 

The parameters for this potential are collected in 
Table III, and the resultant straight line is indi- 
cated in Fig. 2. Since A13+ and Mg > have the same 
electronic state and are similar in size, one would 
expect their interactions with 02- to be quite simi- 
lar, so the values given in Table III are reasonable. 
For their investigation of wtistite, Catlow and 
Fender [42] derived a potential for Fe2+-O 2-. 
From this they obtained a potential for Fe3+-O 2- 
interactions using a scaling procedure based on the 
ionic radii. The coefficient, p+_, is thus taken to be 
the same for both Fe 2+ and Fe B+ , but the pre- 
exponential of the latter is scaled by the factor 
exp ((rye3+ - rre>)/p+-) where r is the appropriate 
ionic radius. Of course, such a method depends 
rather critically on the radii used, and it is 
not clear what radii are most appropriate, since 
the values change in different environments. 
Catlow and Fender [42] took r v e > =  0.80 A, only 
slightly less than that for Fe 2+ (0.82 A), because 
this value takes "account of the absence ofligand 
field stabilization energies for the d s ferric ion" 
[42].* These potentials, which were used here, are 
given in Table III and that for Fe3+-O 2- is plotted 
in Fig. 2. A comparison of ~R for Fe 3+ and A13+ in 
Fig. 2 indicates that, if these potentials are at least 
approximately correct, the concept of the repulsion 
arising from the overlap of charge clouds having 
the ionic radius is of questionable value. At a given 
separation, the energy of the smaller ion (A13+, 
r ~ 0.6 A) is larger. Although differences in elec- 
tronic configuration must be considered* and 
some available data indicate that this relative 

T A B  L E IV Simple impur i ty  defect energies 

Process Absolute  energy (eV) 

X 2 +  2 +  �9 X 
MgMg + Fe~  ~ Mg~o + I-eMg 1.39 

f,e3+ 2+ Mg~Ig + ~ ~ ~ Mg~ + Feivig - 29.67 
Mg~g  + Al2 ~ M g 2  + Alivlg --  24.98 
--  Ve~+ -->_Fe]" - - 1 0 . 1 7  
l:e~ + -+ Fe~" - 42.29 
A ] ~  --~ A l i '  - -  33.84 

Process Relative energy (eV) 

Fe~Ig -> Fe i" + V~ig 12.27 
Feivig + Fe~'" + V ~ g  11.20 
Allvlg --+ Al i ' "+  V~Ig 14.97 

placement is correct, comparison with calculations 
indicates that this Fe3+-O 2- interaction is too 
weak. Because of the ad  h o c  nature of its deri- 
vation, the ferric ion potential must be considered 
uncertain. 

Even the relative energies of solute associates 
were found to depend somewhat on the solute-  
oxygen repulsive interactions. Hence within this 
range of variation the calculated values, as they 
pertain to the Fe 3+, and Fe z+ ions, should be 
viewed with some caution. The variations are not 
great, however, and important trends are unaffected 
by reasonable variations in repulsive parameters. 
Insofar as the parameters used here represent a 
realistic range of solute properties, it is useful to 
view the results as representing changes in the 
crystal behaviour as the properties of the solute 
ion are varied. 

4. Results and discussion 
The calculations fall into four categories: $ simple 
impurity defects, simple impurity vacancy associ- 
ates, complex impurity associates and energies of 
ionic motion. 

4.1. Simple impurity defects 
The energies of substitutional impurity ions in the 
model MgO lattice are given in Table IV. These 
values correspond to the energy required to remove 
a magnesium ion to infinity and bring the indi- 
cated cation up from infinity to replace it. w They 

*The ionic radii for iron used by Catlow and Fender  [42] were derived by Dickens e t  al. [43] .  Corrections were 
applied to the  Fe 3§ radius in F % O  3 (0.67 A) to obta in  an est imate o f  the  effective radius o f  this ion in a rocksalt  
crystal  env i ronment  (0.80 A). This  range of  values is indicated in Table III. Shannon  and Prewitt  [44] discuss the  
derivation and interpreta t ion o f  ionic radii in detail. 
t T h e  localized d states o f  iron ions may  produce non-centra l  or asymmetr ic  repulsive forces. Crystal field effects may  
also affect  interact ions with the  oxygen  ion. These  details are ignored here, an admit ted  deficiency. 
~A fifth, intrinsic defect,  in included as Appendix  3, 
w The effects o f  a free surface upon  the subst i tut ional  energies o f  solutes in ionic crystals have been considered in recent  
calculations. See [54] and [55] .  
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are thus absolute energies in the sense described 
earlier, and are sensitive to the parameters of the 
impurity-oxygen repulsive interaction. 

The energy of solution for the process: 

A1203(s) _Mg~O 2A1Mg + V~Ig + 305 (1) 

may be estimated as: 

AEs = 2EAlivig + Ev~g + 3E Me~ - - E  A12~ (2) 

When compared with similar estimates derived 
from phase diagram data (Appendix 1), such a cal- 
culated heat of solution provides a useful check on 
the validity of  the solute parameters. It is import- 
ant to notice, however, that 2xE s is the difference 
between rather large numbers so that high accu- 
racy, or at least great consistency, is required in 
the calculation of each energy if a reasonable 
result is to be obta ined.  EAlivig , Ev~g and Be MgO 
are all derived from HADES calculations so that it 
will be assumed that the sum 2EA1}vig + Ev~ig + 
3E MgO is correct to within the error in the cohes- 
ive energy term, 3Ee MgO. Estimating this error is 
difficult because the cohesive energy cannot be 
measured directly, but must be calculated from 
thermodynamic data, as in the Born-Haber cycle 
[45-47].  E e is particularly troublesome to obtain 
for oxides because the free 02-  ion is unstable and 
its energy of formation from the neutral oxygen 
atom cannot be detmvnined independently. Esti- 
mates of this electron affinity, E(O2-), are derived 
from the calculated cohesive energies of oxides 
(presumed to be ionic) and the various other data 
in the Born-Haber cycle. There is a considerable 
variation in the resulting affinities, and the major 
source error in "experimental" (i.e. Born-Haber) 
cohesive energies is the uncertainty in E(O z-) 

[45-48].  Taking this uncertainty to be -+ 0.5 to 
0.7 eV [45, 46], the uncertainty in 3E y g ~  is + 1.5 
to 2.1 eV. Sherman [45] gives a value for EeA1203 
o f - - 1 5 7 . 0 e V * ,  for which one can estimate an 
error of  -+ 1.5 to 2.1 eV. Evaluating AEs, and using 
these estimated uncertainties, one obtains 
AE s = 8.2 + 2.3 eV. This is large, but is compatible 
with heats of solution (4.1 to 8.4 eV) derived from 
a simple thermodynamic analysis of solid solubil- 
ity data discussed in Appendix 1. Although not 
conclusive, since the probable errors are large, this 
agreement demonstrates that the parameters used 

may adequately and realistically describe the 
behaviour of the aluminium ion in magnesia. It has 
already been noted that, because the magnesium 
and aluminium ions are isoelectronic and have 
ionic radii which are not vastly differentt, o n e  

would expect their repulsive potentials to be simi- 
lar. On the basis of such a comparison (Tables I 
and III), the potential for A13§ appears reasonable. 

In contrast, an analogous calculation for F%O3 
yields to a solution, AEs, o f - - 2 . 9  +-3eV. The 
cohesive energy of F%Oa, --155.2 eV, is derived 
in [35] from a Born-Haber cycle using oxygen 
electron affinity data given by Waddington [46]. 
Even within an error margin of 100%, this result is 
not compatible with the limited solubility of 
F%O3 in magnesia. On this basis alone a positive 
heat of  solution is to be anticipated and the analy- 
sis given in Appendix 1 indicates a value between 
6.0 and 3.5 eV. Since the errors in the cohesive 
energy (-+ 2 eV) are probably not large enough to 
account for the negative value calculated, it seems 
that some of the difficulty lies in the repulsive 
potential used for Fe 3§ The potential is apparently 
too weak in that it permits excessive relaxation 
around the impurity cation yielding too negative a 
substitutional energy. Changes of two or three elec- 
tron volts in the substitutional energy would pro- 
duce agreement between the theoretical and 
derived energies of  solution. Such variations are 
certainly within a realistic range of impurity 
parameters. Thus, we believe that the potential 
used for iron is incorrect, but not grossly so. 
Together with the potential for aluminium, it 
brackets a region of plausible impurity behaviour. 

Interstitial energies for Fe 2+, Fe 3§ and A13§ are 
also given in Table IV. The lower values for iron 
result from the repulsive potential parameters used. 
Nonetheless, it seems that energies to be expected 
are large, as for intrinsic interstitials (Appendix 3). 

4.2. Simple associates 
Two configurations of  impurity-vacancy dimers 
in MgO are shown in Fig. 1. In one case the impur- 
ity and vacancy are on nearest-neighbour cation 
sites and lie along a (110> axis. In the other, the 
two defects occupy next nearest cation sites, with 

an oxygen ion between them along a <100> axis. 
The calculated binding energies of  these dimers, 

�9 A 1 0  *A Born-Haber calculation using more recent data gives E e 2 3 = 159.0 eV, which is within the error range suggested. 
tr~+~ = 0.67 to 0.72 A, rA13+ = 0.5 to 0.6 A. 
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TABLE V 

Process Energy (eV) 

Feivlg + V~g-+ (Feivlg-V~lg)' 
Feivlg + VMg~ (Feivlg-O-V~g)' 
2FeM + V ~ . ~  (FeivI -V~I -VeM )x g , g g g g 

2Feivlg + _V,~g --, (Feivig-O-V~lg-O-Feivig) x 
Feivig + VMg ~ (Fe~/g-V~ig)" 

Alivig + V~g ~ (Alivlg-V~ig)' 
Alivlg + V~lg ~ (Alivig-O-V~Ig)' 

2Alivlg + V~g ~ (Alivlg-V~ir x 
2Aiivlg + V~Ig -+ (Alivig-O-V~ig-O-Alivig)' 

-0 .85  
-1 .13  
- 1 . 4 2  

- 2.20 
- 0.03 

- 0.68 

-0 .86  
- 1 . 3 2  

- 1 . 6 8  

( -  0.0) 

relative to the separated constituents, are given in 
Table V* and the displacements of  the surrounding 
ion cores and shells in Fig. 3 and 4. The most strik- 
ing feature of  the results in Table V is the stability 
of  the (100)  relative to the (1 10) orientation. 
This effect seems to be independent o f  changes in 
the impur i ty -oxygen  repulsion, since it is observed 
for both aluminium and iron. In contrast, a simple 
coulomb calculation of  the expected binding ener- 
gies for these dimers, which yields surprisingly 
good agreement for the divacancy (Appendix 3), 
indicates that, because of  the closer proximity of  
the impurity and vacancy, the (1 1 0) orientation 
should be more stable. Examination of  Fig. 4 
shows that the central oxygen ion (labelled A) 
plays a key role in the stability of  the (100)d imer .  
The core displacement and polarization (shell dis- 
placement) of  this ion are 2 to 4 times greater than 
those of  other oxygen ions around the associate. 
Fixing the oxygen-ion core decreases the binding 

energy of  the (100)  dimer by half and fixing the 
oxygen-ion shell decreases the binding energy to 
a fifth of  its original value. Clearly, the juxta- 
position of  the "negatively charged" vacancy and 
the "positively charged" impurity on either side 
of  the single central oxygen induces large relax- 
ations which result in a large decrease in the 
energy, both  from the coulomb interaction and 
the dipole field. Although the displacements and 
polarizations around the (110)  dimer are large, 
there is no single source of  a large perturbation. 

The binding energies of  the linear neutral 
trimers analogous to the dimers are also given in 
Table V, and the core displacements are shown in 
Fig. 5. Less symmetric trimer formations (combi- 
nations of  (100)  and (110)  dimers) are possible, 
and were considered by Glass [12], but were not 
included in this study. From Fig. 5 and the bind- 
ing energies of  Table V, it is apparent that these 
simple trimers are essentially two dimers placed 

0 o 0 o 0 o 0  
~ 1 7 6 1 6 9  

o0 �9 

lal 

0 0 0 0 0 0 0  
o�9169 
Oo�9 0 0 0  
o0  0o0o 

0 -0o�9 

Figure 3 Displacements around a (100) dimer. (a) Ion core displacements (X 5). (b) Shell displacements (X 20). 

*The rather large binding energies for associates containing "iron" are a result of the softness of the repulsive potential 
used for the iron impurity. Excessive relaxation around the substitutional ion permits the defect energy to become large 
and negative with the result that the associate binding energies are large. 
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Figure 4 Displacements around a (100> dimer. (a) Ion core 
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displacements (• 5). (b) Shell displacements (X 20). 

end-to-end, sharing a common vacancy. Thus, the 
(100) trimers are considerably more stable than 
their <110) counterparts. 

These results are contrary to the quantitative 
interpretation of Glass [12] for chromium-doped 
magnesia, but are consistent with his and others' 
observations that defects of (100) symmetry are 
present in greater quantity than those having 
(110) symmetry. 

No significant binding energy was found 
between divalent substitutional iron and a cation 
vacancy in the <i 10) orientation. This is to be 
expected, since a divalent substitutional impurity 
has no effective charge relative to the lattice. The 
binding energy of the (100) ferrous dimer is like- 
wise expected to be zero or small. 

4.3. Comp lex  so lu te -vacancy  associates 
In view of the possible importance of clustering on 
physical properties and in the precipitation of 
magnesium aluminate (spinel) and magnesium 

~176 

la) 

ferrite from magnesia solid solution, the complex 
impurity-vacancy aggregates considered here were 
"spinel-like" in that all contained a basic structural 
unit consisting of a tetrahedrally co-ordinated 
interstitial cation surrounded by four cation vacan- 
cies. Because of the strong preference ofaluminium 
for octahedral co-ordination, Mg 2+ ions were 
placed in the interstitial positions of aluminium 
aggregates. Magnesium ferrite, in contrast, is 
nominally an inverse spinel,* so in the case of iron 
impurities the ferric ion was placed at interstitial 
sites. To avoid large polarization energies in region 
II and to provide a realistic matching of.ionic and 
shell displacements across the boundary between 
regions I and II, it is necessary to work with 
clusters which are at least approximately neutral. 
Compensating substitutional impurities (AI 3+, 
Fe 3+) were thus placed in symmetrical positions 
about the cluster to bring its net charge within 
the range -- 2e to + 2e. The symmetry necessary 
for the efficient analysis of these large groupings, 

0000000 
0 o 0 o 0 o 0  
o0oG  .0o 
000  0 0 0  
oOg, )oOo 

o ~- 0 �9 0 0 0 0 0 
 0 ,oOQOoOo 
(bl 

Figure 5 Ion core displacements (X 5) around (100) and (110) trimers. (a) <100) trimer. (b) (100) trimer. 

*For a discussion of spinel structures see, for example, Kingery et al. [58] Ch. 2. 
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TABLE VI 

Process Energy (eV) Remarks 

2Feivlg + V~,,~ --, ( F e i v i g - O - V ' ~ l g - O - F e M g )  x -- 2.20 
6Fe}clg + 3VMg ~ (4-1-t;e3+) x -- 6.08* 
8Fe~ig + 4V~ig --+ ( 6 - 2 - F e > )  x -- 10.48 
22FeMg + llV~ig + (16-5 Fe3+) x -- 33.18" 
22FeMg + llV~ag + 5Mg~g ~ (24-5-Fe3+) x -- 27.24* 
2Al~Ig + V~lg-+ (AlivIg-O-V~Ig-O-Alivlg) x -- 1.68 
6Ali, clg + 3Vi~ig + Mg~g ~ (4-1--A1>) x -- 4.77* 
8Alivlg + 4V~ig + 2Mgz~ig -+ (6 -2 -AI>)  x -- 6.17" 
8Alivig + 4V~g + 2Mgfeig ~ (8-2-A13+) x -- 8.93 
22Alivlg + 11V~ig -~ (16-5-AP*) x -- 28.42* 
22A1Mg + 11V'~lg + 5Mg~g -+ (24-5-Ala~-) x -- 25.28* 
22Alivlg + 11V~lg + 5Mg~g ---- (24-5-A1 > -- a) x 28.23* 

(100) trinaer, - 2.20 per net vacancy 
- 2.03 eV per net vacancy 
- 2.62 eV per net vacancy 
- 3.02 eV per net vacancy 
- 2.48 eV per net vacancy 
(100) trimer - 1.68 eV per net vacancy 

- 1.59 eV per net vacancy 
- 1.54 eV per net vacancy 
- 2.23 eV per net vacancy 

- 2.58 eV per net vacancy 
- 2.30 eV per net vacancy 
- 2.57 eV per net vacancy 

* Approximate formation energy of the neutral defect. 

however, precluded, in some cases, the explicit  

examination o f  the neutral cluster. In these 
instances, the energy of  the neutral cluster was 

estimated simply by adding to (or subtracting 
from) the calculated energy, the energies of  the 
isolated substi tutional impurit ies necessary to 
yield a net charge of  zero [42]. When the stability 
of  the cluster relative to the separated defects is 
computed,  these addit ional terms simply cancel 
out;  thus, the binding energies reported for the 
neutral clusters do not,  in most cases, include (or 
exclude) the explicit  interactions of  the additional 
ions with the remainder o f  the cluster. The energies 
reported are, strictly speaking, the binding energies 
or formation energies of  the clusters having a net 
charge. Since one expects the addit ion of  oppo- 
sitely charged point  defects to lower the energy, 
the energies calculated represent an upper bound 
(least negative) value for the energies of  cluster 
formation.  In any case, the binding energies 
obtained here give a clear indication of  trends in 
the relative stabili ty of  large point  defect aggre- 
gates. 

Catlow and Fender [42] investigated spinel-like 
aggregates o f  point  defects in FeO using HADES, 
and they  found certain combinations of  the basic 
tetrahedral unit  to be particularly stable. Three o f  
these configurations were used as starting points in 
this investigation: the "4-1",  "6-2"  and "16-5" 
cluster arrangements. In addit ion to these, a con- 
figuration corresponding to a normal spinel 
("24-5")  and a variant of  the "6-2" ("8-2")  were 
considered. The results of  the calculations for 
these clusters are gathered in Table VI. Both the 

total  energy of  formation of  the cluster from 
separated impurities and vacancies and the energy 
o f  formation per net vacancy are given. The energy 

per net vacancy (i.e. the total  number of  vacancies 
less the number of  interstitials) provides a con- 
venient means of  comparing the stabilities of  com- 
lex clusters with those of  simpler associates, par- 
t icularly dimers and trimers. Thus, i f  the energy 
per net vacancy is the same as or greater (less nega- 
tive) than the energy o f  a neutral trimer, there 
would be no overall decrease in the crystal energy 
as a result o f  agglomeration o f  simpler groupings. 
In such a case, clusters would not  form in signifi- 
cant numbers. I f  the energy per net vacancy is less 
than the energy o f  the neutral trimer, the larger 
clusters may become important  equilibrium struc- 
tures. 

The Structures and propert ies of  the clusters 
are summarized in Table VII and Figs. 6 to 9. The 
simplest cluster, the "4-1",  consists of  a single 
tetrahedral  unit with four compensating impur- 
ities in a symmetric arrangement off  the four cor- 
ners of  the tetrahedron.  A comparison of  the bind- 
ing energies per net vacancy given in Table VI with 
those given in Table V indicates that the "4-1" 
cluster is about as stable as the simple (100)  
trimers. It is worth emphasizing the profound 

effect of  surrounding cation vacancies on the stab- 
il i ty o f  cation interstitials. Whereas there is a 
rather large energy change opposing the formation 
o f  the simple interstit ial defect (10 to 15eV) 
(Appendix  3), the removal o f  four nearest cations 
renders the complex defect very stable.* 

The "6-2" cluster, shown in Fig. 7a, consists of  

*Admittedly, trivalent impurities have also been added. However, if one assumes their polarization and displacement 
fields simply superimpose, then the energy of formation of the interstital will be only slightly affected by the compen- 
sating ions, except for a coulomb interaction which is positive. 
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T A B L E V I 1 Complex  associate s t ructures  

Associate  Centre  o f  s y m m e t r y  Loca t ion  of  compensa t ing  
relative to f c c axes* impuri t ies  relative to 

the  centre  of  s y m m e t r y  r 

Ne t  
charge 

Remarks  

4 _ l _ F e 3 +  , i 1 
[ 3 ,  r ,  3 ]  

4 - 1  - A I  a+ 

[ _ _ 3 , _ _ 1  1%1 ~, 131, [-- 3 , - -  13] 
[3, , 7 , -  13], [}, 13] - -  3 ,  

6_2_F e3+  ~ [7 ,3 ,  [ [r,  3, O] ' ' 21, ~,' r,' 21 
6_2_A13+ ~ 1 [ - ~ , - 3 ,  2], [3, 7, - 2 ]  

i 1 1 , I 0 ]  17, - -  [ y, 13, 01, [-- l r ,  

8 _ 2 _ A P +  ' ' [>3,  [ [r,  3, 0l ' ' 21, 5,' >1 2] 
[ - 3 , - '  1 _~, 2], [}, r, - 21 
[--  13, lr, 0l ,  [ 3 , -  13, 0l 
[ -  3, 1}, 0l ,  ' 1 0l [ l r ,  - -  7, 

1 6 - 5 - F e  a+ [ . . . . .  31 [--  23, - -  7,1 }1, [ _  3 , -  23, }l, 
[ -  23, } , -  11 

1 6 _ 5 _ A P +  [ 1  1 1 1  3 , -  211, [--  3, 7, - -  2}1, 
2~-, - 3] 

[ -  }, 23, - -  11, [23, -- '7,  - -  3],' 
[3, 11 2r,  3] 

[ 2 } , '  . . . .  3, 31, [r,  r,  2w], 
[3, 1 3 ,  231 

[ 1 } , '  1 3 , - -  I}],  l 1 , [ 1 > - -  1> l r ] ,  
[ -  t} ,  113, 1}1 

[ -  1},- 13,- 131 

[ - - 3 , - -  1 31, 231 [3, 2 >  i 1 2 4 - 5 - F e a +  [ 5, ~, 3] ' ' 3 ,  

[},17, 23] 
2 4 - 5 - A 1  a+ [~, 13 ,111 , [_ } , i>1 }1  

[}, ] 3 , -  }1, [ 1 1 , -  3, }1, 
1 1 r, 1>{-] 

[ i3 ,1  1 , , 1 
- -  7 ] ,  I r, - -  7, 3 , - -  7,] ,  [--  

[ } , -  1},  3], [ -  11, }, }] 
1 i 1 17, - -  [ - - > - -  31, [ 1 , 3 , - - 1 } 1  
[ _ ,  1 1}1, [ - - 3 ,  r,1 __ 2 } ]  ~, ~, 

[3, -s }, - -  2}1, [ - - '  - -  21, 31, 3 ,  
1 : 1  ..... 1 1 1 1 [--.25, > - ~-], [ ~ , -  2 >  - ~] 

[ _ 2 3 ,  , , . . . .  - 7 ,  r l c [27 ,  3, ~ l ,  
[ - ,  3, 2~-, - }1, [2}, _13, - }l 

2 4 - 5 - A P + - a  [ 2'-, ~, 3] As above wi th  all co-ordinates  
containing-+ ~- + 1 1 !~:7 3, and -+ 2~ 
replaced wi th :  [13, 13, 2}1, 
[13, 21, lk]  

[2}, 13, 131, [--  27,' - -  13, 1}1, 
_ _  1 1 1 . 1 7 , - 2 3 , 1 7 ]  �9 

[ -  1 } , -  1 I, 211, [ -  23, 13, - 1}1 
_ _  1 t _ _  13, 27, 131 

1 [ -  13, 1 > -  21], [ 1 } , -  ! } , -  21] 
[ 1 } , - -  2 } , - -  1}!  

[ 2 3 , -  1 1 , -  111 

* Cent red  on a cat ion.  Units  o f  a o, the  a n i o n - c a t i o n  distance.  
t Units  o f a  o. 

- - 1  

0 
- - 2  

0 

- - 1  

- - 1  

+ 2  

+ 2  

+ 2  

Single te t rahedra l  
uni t  o f  four  cat ion 
vacancies around an 
intersti t ial .  
Fe 3+ interst i t ial  for 
the  i ron cluster;  
Mg 2+ interst i t ial  for 
the  a luminium.  
Two edge-sharing 
te t rahedra l  units  

Al ternate  a r rangement  
of  compensa t ing  
Al)vlg to give neutra l  
defec t ,  Mg2+-Mg > 
repuls t ion  included.  
Inverse spinel 
s t ructure .  
Corner-sharing 
te t rahedra l  arrange- 
ment  of  five tetra-  
hedral  units;  Fe 3§ and 
A P  § interst i t ials  

Normal  spinel struc- 
ture,  

Corner-sharing tetra-  
hedral  a r rangement  of  
five te t rahedra l  units;  
Mg 2+ interst i t ials  

Al ternate  a r rangement  
of  compensa t ing  
cat ion impuri t ies  
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Figure 6 The 4-1 cluster. 

two edge-sharing tetrahedral units with six sym- 
metrically placed compensating impurities. This 
arrangement yields a net charge of zero for Fe 3+ 
interstitials, but has a net charge o f -  2 for Mg 2+ 
interstitials. An alternative configuration of eight 
substitutional impurities produces a neutral defect 
in this latter case (the "8-2" cluster, Fig. 7b). As 
suggested earlier, the explicit consideration of the 
neutral cluster gives a more negative value of the 
formation energy relative to a similar defect hav- 
ing a net charge, although the rearrangement of 
the impurities may play a role. In any case, the 
neutral configurations of these edge-sharing clusters 
are more stable than (100) trimers by about 0.4 to 
0.5 eV in the cases of  both Fe 3+ and A13§ 

The largest aggregates investigated model a sub- 
stantial portion of the spinel unit cell, and consist 
of five corner-sharing tetrahedral units themselves 
arranged in tetrahedral symmetry. In the "16-5" 
configuration (Fig. 8) the trivalent octahedral ions 

[ooq 

i 

0 Oa- 
0 Fe3+, AI 3+ interstffial 
�9 Substitutional 
@ Mg 2* 

~io] 

Figure 8 The 16-5 cluster. 

are placed at the positions they would occupy in 
an ordered inverse spinel lattice. The "24-5" 
cluster, in contrast, mimics a normal spinel (Fig. 9). 
These large spinel-like aggregates are uniformly the 
most (energetically) stable defects considered. In 
the case of iron, the calculation shows the inverse 
("16-5") structure to be more stable than the nor- 
real ("24-5") arrangement. Although this is satisfy- 
ing, the same result is obtained in the case of A13+ 
impurities, which is curious considering the strong 
preference for octahedral co-ordination shown by 
aluminium in MgA1204. Such a discrepancy may 
be a physical effect due to the fact that the cluster 
is surrounded by the MgO rather than the spinel 
lattice, but it could also be an artifact of the inter- 
ionic potential model used. This anomaly is yet to 
be resolved, but calculations of site preference 
energies in the spinel lattice may prove useful in 
this regard. 

The energy of the aluminium "24-5" cluster is 

02 

0 Mg 2+ 

�9 Substitutional 

@ Interstitial 
lul 

Figure 7(a) The 6-2 cluster. (b) The 8-2 cluster. 
Ibl 

(•)0 2- 

0 Mg 2+ 

Substitutional 

@ Interstitial 
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�9 Substitutional 

Figure 9 The 24-5 cluster.  

only slightly more negative than that of the "8-2" 
cluster and is substantially less negative than the 
energies of the other spinel-like groupings. In an 
attempt to investigate this, an alternative configur- 
ation of the same number of  octahedral impurities 
was tried, in which some of the trivalent aluminium 
ions were placed further from the centre of sym- 
metry: at [0 .5 , - -0 .5 ,  1.5] and [1.5, 1.5, 2.5] 
rather than [ 0 . 5 , - - 0 . 5 ,  1.5] and [--0.5, 0.5, 
- 2.5] as in the original arrangement (Table VII). 
The calculation showed the cluster stability to be 
considerably enhanced by this modification, yield- 
ing a binding energy which is virtually the same as 
the inverse structure. This observation raises an 
important point regarding the techniques used; 
namely, that the arrangement of compensating 
octahedral cations can significantly affect the 
binding energy of the defect. It is possible, for 
example, that a lower symmetry configuration 
exists which is more stable than those considered 
in this study. The present results indicate, how- 
ever, that reasonable changes in either the impur- 
ity configuration or the cation-anion repulsive 
potentials are unlikely to alter the basic obser- 
vation that large vacancy- impurity aggregates-- 
particularly spinel-like complexes are energetic- 
ally stable relative to simple associates and isolated 
point defects. 

Although observations of cluster formation in 
magnesia are indirect and sketchy, the existence of 
such large stable groupings of solutes and vacancies 
is consistent with some experimental data. In par- 
ticular, the work of Wertz and Auzins [13] and 
Woods and Fine [14] suggests that aggregates form 
in the temperature range of 400 to 500 ~ C. Work- 
ing with undoped, commercially available crystals 
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T A B L E  V I I I  Energies of  mo t io n  

Process Relative energy (eV) 

(MgMg--VMg) t ,  0 -~ (A.C.)* 2.00 
( o X - v ; ' ) i ' ,  o 2.01 

(Fe~vlg--V~Ig)'~ 1 o ~ (A.C.) 1.58 
(Fe}vIg--V~Ig)'a 1 o ~ (A.C.) 1.67 
(Alivig-g~ig) 'a,  o -+ (A.C.) 2.71 

*Activated complex .  

which presumably did not contain more than 100 
ppm of chromium, Wertz and Auzins further 
inferred the dissociation of clusters involving 
chromium at about 700 ~ C. Crude calcuations for 
the clusters considered here, discussed in Appendix 

2, are in accord with these observations, showing 
an orders-of-magnitude increase in the number of 
clusters as the temperature is lowered below 
1000 ~ C. In this sense the results given here sup- 
port what many workers have long suspected: that 
aggregates may play a significant role in determin- 
ing the crystal defect structure at the low hom- 
ologous temperatures at which precipitation begins 
t o  o c c u r .  

4 . 4 .  E n e r g i e s  o f  m o t i o n  
Catlow et al. [2] calculated the activation energies 
of motion for Mg 2+ and 02. in the magnesia lattice. 
They assumed a simple symmetric saddle point 
between two anions for motion along a (1 10) 
direction. The starting configuration is thus a 
(1 10) dimer. The same procedure was followed 
here in the calculation of energies of motion for 
impurities, and the results of these calculations, as 
well as a recalculation of the energies of motion 
fo(: Mg 2+ and 02-, are given in Table VIII. These 
values are sensitive to the impurity-oxygen repul- 
sive potential, and since the iron potential is prob- 
ably weak, we believe the calculated activation 
energy for iron is tOO low. 

5. Summary and conclusions 
The major difficulty associated with the meaning- 
ful calculation of the energies of interaction 
between ionic solutes and the MgO host lattice is 
clearly the proper choice of the solute-oxygen 
repulsive potential. Unlike the case of a pure 
crystal, reliable repulsive parameters for a solute 
cannot be obtained directly, and our assumption 
has been that the parameters are the same as those 
of the pure solute compound, if these are known 
In the absence of such information one must 
resort to either ad hoc scaling procedures or the 



direct calculation of Born-Mayer parameters from 
a consideration of the interactions between free 
ions. The latter, particularly Hartree-Fock calcu- 
lations, may yield poor results [35]. 

The assessment of the validity of  an impurity 
potential must depend upon comparison with 
either potentials of known reliability for similar 
ions or with experimentally characterized impur- 
ity behav~our. Thus, on  the basis of comparisons 
with the Mg2+-O 2- interactions and, the exper- 
imental heat of solution of alumina in magnesia, it 
seems that the choice of Born-Mayer terms used 
here for the A13+-O 2- interaction is a reasonable 
one, and some confidence may be placed in the 
results of these calculations insofar as they apply 
quantitatively to the behaviour of the aluminium 
ion in solution in MgO. In contrast, the calculated 
heat of solution for Fe 3+ indicates that the repul- 
sive potential used is too weak. However, relatively 
minor changes in the substitutional energy would 
be required to correct this, so that the potential is 
not grossly deficient. Although the repulsive 
parameters used here are not correct for a quanti- 
tative description of the behaviour of Fe 3+ and 
Fe 2+ in MgO, together with those for A13+ they are 
representative of a range of behaviour character- 
istics of  impurities whose interactions with the 
host lattice may be described as ionic. Within this 
range, the trends observed in the relative stability 
of the various defect associates are independent of 
the variations in the impurity-oxygen repulsive 
potential, so that improvements in the description 
of the impurity ion are unlikely (within the frame- 
work of HADES) to alter the qualitative con- 
clusions of this work. 

The calculated energies are, of course, subject 
to uncertainty, and it is difficult to make meaning- 
ful error estimates. However, the relative energies 
do not vary radically, changing by about 20% 
with a substantial change in the repulsive poten- 
tial. This variation is probably representative. The 
absolute energies are least reliable, but they are 
also less important as far as the present work is 
concerned. 

Taken as a whole, then, this work leads to 
several conclusions concerning the interactions 
among point defects in MgO. 

(1) Impuri ty-vacancy dimers and trimers are 
energetically stable, trimers more so than dimers. 
Of the two possible dimer orientations in the MgO 
lattice, the (100) orientation is more stable by 0.2 
to 0.4 eV due to the large displacement and polar- 

ization of  the central oxygen ion. This result is the 
opposite of that expected on the basis of a simple 
monopole interaction between the defects. The 
neutral linear (100) trimer is likewise more stable 
than its ~ 110) counterpart by 0.4 to 0.8 eV. The 
binding energies and the displacement fields show 
that the linear trimers are essentially two dimers 
end-to-end, sharing a common vacancy. 

(2) Complex associates of  impurities and 
vacancies, based on a "spinel-like" unit consisting 
of a cation interstitial tetrahedrally co-ordinated 
by anions and cation vacancies, are energetically 
more stable than simple dimers, trimers and iso- 
lated defects, becoming increasingly so as the size 
of  the cluster increases. The large binding energy 
of these groupings relative to the simpler dimers 
and trimers indicates that clustering should be an 
important phenomenon at low homologous tem- 
peratures. 

(3) Interstitial formation energies in MgO are 
large (>  10eV) but are substantially reduced by 
the presence of adjacent cation vacancies, as occurs 
in cluster formation. 

(4) Activation energies of motion for impurities 
are of the order of  2 eV. 

To the extent that these results are consistent 
with the existence of a variety of impuri ty-  
vacancy associates, they are in agreement with the 
bulk of experimental data. The greater stability of 
the (100) dimer/trimer orientation relative to its 
(110) counterpart is in accord with the universal 
observation that centres having (100) symmetry 
are more prevalent than those with (110 ) sym-  
metry, although unknown entropy terms may also 
be important in this regard. Quantitative compari- 
son is practically impossible because of the lack of 
a firm body of experimental data. The single study 
[ 12] available which addresses itself to the problem 
of determining the dimer/trimer binding energies 
interprets the greater concentration of (100) 
orientation defects in terms of a large entropy 
term, but the evidence supporting this conclusion 
is rather weak. The energies calculated provide a 
self-consistent set of values which clearly indicate 
a hierarchy of defect structures and which permit 
a realistic comparison with experiment. 
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Appendix 1. Heats of solution of AI20 3 
and Fe20 3 in MgO from phase 
diagram data 

For a simple binary system, the maximum solu- 
bility of one component in a large amount of 
another is given by the familiar relation [49] 

A S  Ex AH 
In ( x : ; )  - (3 )  

k kT 

where X~ is the maximum solubility of A in B, 
and where any solubility of B in A has been neg- 
lected. This relationship may be applied to ceramic 
systems involving aliovalent constituents to obtain 
an empirical description of the solubility as a func- 
tion of temperature. In the present context, how- 
ever, the energy change of a particular solution 
process 

R203 MgO> 2RMg + V~g + 30~ AE~ (4) 

is desired. Extracting an estimate of such an 
energy change from solubility data is compli- 
cated by the existence of a solute-induced defect 
structure which changes with temperature and 
solute concentration. Thus at low concentrations 
or high temperatures, one expects the solute to be 
predominantly unassociated. In contrast, at lower 
temperatures and higher concentrations, significant 
association should occur. A proper evaluation of 
the energy change of a particular process requires 
that the defect structure be known precisely over 
the range of solid solubility data. This is not the 
case for either alumina (A1203) or hematite 
(F%Oa). Data for AlzO3 have been obtained only 
for temperatures in excess o f ~  1700 ~ C [50], with 
a maximum solubility of ~ 8% occurring at the 
eutectic temperature of 1995 ~ C. The combination 
of high solubility and high temperature suggests a 
mixed mode of solution, a conjecture supported 
by calculations using available computer programs 
[16]. In contrast, FeEOa is very soluble in MgO at 

lower temperatures [51], and significant association 
of the ferric ion into neutral trimers occurs for 
iron concentrations greater than ~ 2% [16]. Given 
present data and the uncertainties concerning the 
defect configuration, the energy change for the 
process (4) can at best be bracketed between an 
upper limit derived under the assumption of com- 
plete dissociation of the solute and a lower limit 
derived from the same data assuming complete 
association into neutral trimers. Although this 
approach is crude, it allows a comparison with the 
theoretical values calculated from the HADES 
results. 

The process of interest is* 
l 

A1203 UgO (A1203)ss AHa ~ AE1 (5) 

where (A1203)ss denotes alumina in solid solution 
in magnesia. Both alumina and hematite form 
intermediate spinels with MgO, so Reaction 5 may 
be split into two processes: 

AI20  3 + MgO --> MgA120a AH2 ~ A~72 (6) 

MgA1204 M gO (A1203)s s AH3 ~ AE3, (7) 

SO t h a t  A E  1 = A E  2 + A E  3. A E 2 ,  however, is smal l  

[52] so that for the purposes of this simple calcu- 
lation, AEt,~AE3. With this approximation, 
Reaction 4 becomes, assuming complete dissoci- 
ation, 

MgA1204 M~@_~ MgO + 2A1Mg + V~g + 30~ (8) 

for which 
AG -- AG o = A H - -  TAS. (9) 

One may write for Reaction 8 

32 _ r  ___AGO 1 aMg~176 exp . (10) 
aMA O kT / 

Now, a M g o = l  and a M a o = l  since MgO and 
MgA1204 are "pure" substances. Furthermore, 
assuming Henry's law to hold for aluminium in the 
region of solid solution, 

aA1 = "YXA1 (11 )  

where XA1 is the site fraction of aluminium. The 
standard state for vacancies is customarily taken 
to be at infinite dilution so that 

t/v = X v = 1XA1. (12 )  

*For brevity, A12 0 3 and Fe 2 0 3 wilLbe considered to be entirely analogous here, despite the variable oxidat ion state of  
i ron and its greater solubility in MgO in air. 
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Hence, Reaction 10 becomes 

T2 (AG-- AG~ (13) 
ag ~ - X ~ l  = exp \ kT /" 

The standard free energy change for Reaction 8, 
AG ~ may be written 

AG O o o 
= ~MgA1204(ss) - -  ~/MgA1204 • 0,  ( 1 4 )  

where the standard state for aluminium in solid 
solution has been taken to be spinel. Now, 

ao = 1 (15) 

so that Reaction 13 becomes 

~- A1 = exp . (16) 

When XA1 = X~I, the solubility limit, AG = 0 and 

, . 3  
2 AA1 = 1, (17) 

or  
3 ,2 1 

- . ( 1 8 )  
2 x k  

Thus Equation 16 becomes 

Xk31 exp . (19) 

For an ideal solution, 

~XA1 = exp - - -  , (20) 

since A N  ideal = 0. Hence with Equation 19 one 
obtains 

AG xs AS xs A H  
In X~I = 3kT 3k 3kT (21) 

where AG xs = A G - -  AG ideal and the factor of  2 
has been absorbed into AS xs. A plot of  X:xl versus 
1/T will have a slope o f  AH1/(3k). Enthalpies 
calculated for AltOs and Fe2Os on the basis of  
Equation 21 are given in Table IX. The effects of  
mutual solubility may be taken into account by 
noting that for MgO dissolved in MgAI204, the 
spinel will obey Raoult 's law approximately,  so if 
X~aAO is the mole fraction of spinel at the spinel- 
two phase boundary, 

aMAo = X~IAO (22) 

so that Equation 17 yields "/2/2 = XMAo/XAI: 3 This 
correction is small, however (Table IX) and, given 
the crudeness of  the calculation, is ignored here. 

For full association into trimers (of  unspecified 

T A B L E  IX Est imated energy change for the  process 

R203 -* 2Rivlg + V~Ig + 30  x 

Solute E(eV) F rom HADES 

A1203 7.8(8.4)* 8.2 -+ 3 
4.1 

Fe~O 3 6.0 
- - 2 . 9 - + 3  

3.5 

* Includes a correction for mutua l  solubility. 

orientation) the solution process is 

MgA1204 _Mg_O_> MgO + (A1Mg - -  V ~ i g  - -  A1Mg) x , 

for which 
(23) 

( A G ' - -  AG~ 1 
-- A exp \ /-r- ] ,  (24) 

where A is a configurationat pre-exponentiat. Here 

AG'  = AG + AE, (25) 

where E is the energy change for the association 
process: 

I t  / r  " x 
2A1Mg + VMg -+ (AIMg - -  VMg - -  A1Mg ) . (26) 

Proceeding as for the case of  complete dissociation, 
with aMA O = 1 and noting that aAI_V_A1 = 3,'XA1 
one obtains the result 

AG x~ 
In X'A1 -- kT ' (27) 

where various constants have been absorbed into 
ASXS/k. 

Thus, assuming complete association, a plot of  
in X~I versus 1/T will have a slope of  AH'/(kT), 
where AH '  is now the enthalpy change for 
Reaction 23. The energy change for Reaction 4 is 
then AH'-AE. Although AE is not known pre- 
cisely, it may be estimated conservatively as -- 1 . 5  

eV based on the HADES calculations. Using this 
value, the lower limits given in Table IX may be 
obtained. 

Appendix 2. Estimates of the 
concentration of larger clusters 

Although it is, in principle, possible to calculate 
exactly the concentration of  various defect con- 
figurations interrelated by mass action expressions, 
it is, in practice, difficult to include large clusters. 
Available computer  programs [16] solve a set of  
n0n-linear simultaneous equations involving the 
mass-action equilibrium constants. The variables in 
the system are chosen so as to make the iteration 
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as efficient as possible, and in most instances the 
unassociated cation vacancy and impuri ty  concen- 
trations provide satisfactory results. The problems 
in dealing with larger clusters become apparent,  
however, when one considers the formation of, for 
example,  an (8-2-A1) cluster from the unassociated 
defects 

8AlMg + 4V~g + 2Mg~g -+ (8-2-Al) (28) 

for which, taking the configurational pre-exponen- 
tial to the 10" 

I(8-2-Al)] 
[AIM~]~[V~] ~ 

i [8.93~ = ] - -  K r :; 

(29) 

Because of  the large exponents  in the denominator  

of  Equation 29, K~L 8 must be large if  a significant 
number of  clusters are to form. This will occur at 
low temperatures.  However, at T =  500 ~ 
K~L 8 = 1.7 x 1059, near the limit of  available com- 
puter  systems* which cannot  handle numbers 
larger than ~ 1076. For  larger groupings, such as 

the (24-5-Al) one has (for the least stable cluster, 
assuming a pre-exponential  o f  1) 

[(24-5-Al)] {25.3 t 
= exp [ - -~ -1  , (30) [A1Mg]22 [V~ig] 11 

which is greater than 101~176 at 1000 ~ C. Thus the 

problem becomes intractable when the cluster 
includes more than just  a few impurities and 
vacancies. 

While an exact calculation is not  feasible with 
existing facilities, one can obtain an approximate  
solution sufficient to demonstrate the possible 
importance of  large clusters at low temperatures.  
The formation o f  the (8-2-Al) cluster from (100)  

trimers can be written as 

�9 t r  " x 

4(A1Mg--O--VMg--O--A1Mg) -+ (8-2-A1) (31) 

for which 

[(8-2-A1)] 
�9 " �9 x 4 KCL8 

[(A1Mg -- O - V M g -  O - -  A1Mg ) ] 

10 (2.21] 
= 3- ~ e x p \ k T /  " 

(32) 

Now, exact calcuations which do not include large 

clusters indicate that ~at temperatures o f  ~ 4 0 0 ~  C 
and solute levels as low as 200 ppm, 89% or more 
of  the trivalent solutes are associated into (100)  
trimers. This fraction will increase with increasing 
solute concentrat ion ( ~  96% at 1 0 0 0 p p m ) a s  well 

as with increasing trimer binding energies and pre- 

exponentials.  In the present approximat ion it will 
be assumed that  virtually all the solute is bound 
into trimers at low temperatures.  I f  one introduces 
larger, energetically more stable groupings, they 
will form at the expense of  the trimers. Defining 

XC L 8 = [(8-2-Al)], X T = [ ( A 1 M g - O - V ~ I g - O -  
A1Mg) x ] and [All = total  solute fraction, then the 
solute conservation equation may be approximated 

as 
[All ~ 2XT + 8XcL8 (33) 

in the temperature range of  interest. Substituting 
into Equation 32, one obtains 

XCL8 
q[~([All - -  8XcL8)} 4 = KCL8 (34) 

or  
4 K  1/4 X v l /4  rAl lK 1/4 (35) CL8 C L 8 + A C L 8  = I t  J CL8" 

Table X gives the values of  KCL 8 calculated from 

TAB LE X Estimates of the concentration of 8-2-A1 clusters 

Temperature (~ Al(ppm) KCL 8 XCL 8 Fraction of 
solute in cluster 

400 200 4.38 X 10 Is 2.288 X 10 -s 0.915 
700 200 3.46 X 101~ 2.336 X 10 .6 0.093 

1000 200 6.94 X 107 6.948 X 10 -9 2.779 X 10 -6 
400 1000 4.38 X 10 ~s 1.218 X 10 -4 0.974 
700 1000 3.46 X 101~ 7.165 X 10 -5 0.573 

1000 1000 6.94 X 107 3.830 • 10 -6 0.031 

*The concentration of large groupings is best defined as the number per unit volume. The concentration which appears 
in Equation 29, however, is a site fraction. The statistical analysis leading to a rigorous definition of [(8-2-A1)] in terms 
of the volume concentration is made complicated by the fact that each cluster occupies many cation sites�9 However, 
as long as the concentration of clusters per unit volume, CCL8, is much less than the total number of cation sites per 
unit volume, N, (CcL 8 < N), then [(8-2-A1)] ~ CCL8/N. 
tlBM 370. 
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TA B LE X I  Estimates of the concentration of ( 2 4 - 5  - A 1 )  clusters 

Temperature (~ C) Al(ppm) KCL X C L  Fraction of 
solute in cluster 

400 200 5.86 X 1067 9.069 X 10 -6 0.997 

700 200 1.80 • 104s 6.721 • 10 -6 0.740 

1000 200 2.255 X 1033 2.255 X 10 -I~ 2.481 • 10 -~ 

400 1000 5.86 • 1067 4.543 X 10 -s 0.999 

700 1000 1.80 X 1045 4.265 X 10 -s 0.938 

1000 1000 2.255 X 1033 1.475 • 10 -s 0.325 

1200 1000 1.29 • 102s 6.310 • 10 -9 1.39 • 10 -4 

Equation 35 at 400, 700 and 1000~ for solute 
levels of  200 and 1000ppm. At 1000~ the 
approximation (33) does not hold, and significant 
numbers of  solute atoms will be unassociated as 
well as distributed among the dimer/trimer con- 
figurations. Thus, at temperatures above 700 ~ C, 
K c ,  8 represents a significant overestimate. Never- 
theless, it is apparent that significant numbers of  
clusters may be expected to form in a temperature 
range of  400 to 700 ~ C at solute levels as low as 
200ppm, increasing rapidly as the solute concen- 
tration is increased. 

The expression for (24-5-Al) clusters analogous 
to Equation 35 is: 

1KI/llX .~[r i/11 1 rAllK1/11 (36) 1 CL C5 + CL = ~ t  J CL - 

Using the most stable form of  this cluster, and 
assuming a configurational pre-exponential of  1, 
KcL = (1/311) exp (9.75/kT),  and one may calcu- 
late the results given in Table XI. The trends are 
analogous to those for the (8-2-A1) cluster. It 
should be re-emphasized, however, that these are 
crude estimates and are meant only to indicate 
that cluster formation, as described within the 
HADES model, is a plausible equilibrium process 
in MgO at low temperatures. 

A p p e n d i x  3 .  I n t r i n s i c  d e f e c t s  

The energies of  several intrinsic defect structures 
were investigated briefly. These included the 

divacancy, multiple vacancy associates and inter- 
stitials. 

Catlow et al. [2] calculated the formation 
energy o f  the divacancy. T h e  calculation was 
repeated here and the binding energy relative to 
the separated vacancies is given in Table XII. It is 
of  interest to note that the binding energy calcu- 
lated by HADES ( -  2.67 eV) is virtually the same 
as that calculated using a simple coulomb 
expression, 

4e:  
L:b - -  (~  -- 2.75 eV), (37) 

ero 

where e is the macroscopic static dielectric con- 
stant for MgO (9.7). The ionic displacements and 
polarizations o f  the divacancy, however, corres- 
pond essentially to a superposition of  the displace- 
ments and polarizations o f  each separated vacancy. 
Evidently the polarization o f  the surrounding 
medium is virtually the same as it would be if 
there were matter between the vacancies. Since e 
accounts for the effects of  the polarization on the 
field at a given point in the solid, it is perhaps not 
surprising that Equation 37 should hold as well as 
it does in this case. 

Two larger clusters o f  vacancies were investi- 
gated in addition to the simple divacancy. The 
"4-vacancy is simply a {1 00} planar arrange- 
ment of  two divacancies. This grouping was also 
considered by Stewart and Mackrodt [53, 54] in 
their studies of  the interactions between sur- 

TABLE XII Intrinsic defect energies 

Process Energy (eV) Remarks 

Mg~g ~ Mg= z§ + V~,Ig 23.83 
O~) ~ O= 2- + V~ 24.70 
null ~ V~ig + V~ 7.7 
V~g + V~) --+ (V~g -- V~) x -- 2.67 

2V~ig + 2V() ~ (4-vacancy) x -- 8.39 
4 V ~ g  + 4V()  -~ (8-vacancy) x - -  21 .28 

Mg~g ~ Mg~" + V~g 12.42 
0~3 --" 0[' + V~ 12.1 

Schottky energy 
- -  1.34 eV per vacancy; 
-- 2.75 eV expected from coulomb calculation 
- - 2 . 1 0  eV per vacancy 
- -  2.66 eV per vacancy 
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faces and point defects in cubic ionic crystals. 
Their findings are in agreement with those reported 
here. The "8-vacancy" is the obvious cubic arrange- 
ment of two 4-vacancies. The striking feature of 
the results is the magnitude of the binding energies 
per vacancy. It can be easily shown [35] that the 
limiting value for this binding energy is - l/2gs 
(--3.85eV) where gs is the Schottky energy. 
Apparently the initial approach to this limit is 
rapid, since for only eight vacancies the binding 
energy is 70% of the limiting value. Energetically 
speaking, clusters of vacancies much larger than 
the 8-vacancy may be considered to be macro- 
scopic voids rather than microscopic associates of 
point defects. A simple calculation suffices to 
show that, like the divacancy, these larger group- 
ings of vacancies will not form in significant num- 
bers as intrinsic defects in MgO at temperatures 
lower than the melting point. If a supersaturation 
of vacancy pairs is produced via an extrinsic mech- 
anism such as irradiation or reduction of OH-, how- 
ever, clusters could form in sufficient quantities to 
become important in void formation. In this 
limited sense, the present observations are in 
accord with the suggestion of Briggs [55, 56] and 
Briggs and Bowen [57] that large cavities in MgO 
may be due to the coalescence of microcavities. 

The interstitial formation energies for Mg 2§ and 
02- given in Table XlI preclude their formation in 
the MgO lattice. However, it should be noted that 
these energies are those for the reaction: 

Mg~g ~ Mgl + V~g (38) 

when the interstitial and vacancy are widely separ- 
ated. In contrast, as a part of a cluster of vacancies, 
the cation interstitial becomes a stable defect, as 
discussed in the main text. Whether there is some 
configuration which would lower the energy suf- 
ficiently to admit interstitials as intrinsic defects 
is uncertain, but seems unlikely in view o f  the 
large energies given in Table XlI. It is noteworthy 
that the interstitial energy for 02- is slightly less 
than that for Mg 2§ the opposite of what one 
would guess solely on the basis of ionic size, Dienes 
et  al. [40] Obtained a similar result for octahedral 
interstitials in alumina. If one thinks in terms of  
ionic radii, this result is counter-intuitive, given the 
large radius of the oxygen ion (1.4A) and the 
small size of  the tetrahedral "hole" (r ~ 0.4 A). 
For an ionic material, however, such concepts may 
be misleading. The high charge of an interstitial 
ion polarizes the lattice and strongly repels like 
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ions. These effects, together with the close proxim- 
ity of ions of opposite charge, lowers the overall 
energy of the configuration. Although the repul- 
sive term is a substantial part of the total defect 
energy, the final, relaxed state is determined to a 
considerable extent by electrostatic interactions. 
Since the absolute value of the charge is the same 
for the oxygen and magnesium ions, the similarity 
of their interstitial energies, within the framework 
of HADES, is perhaps not surprising. It should be 
noted that while the interstitial energies are very 
sensitive to the Mg2+-O 2- repulsive potential, they 
are much less dependent upon the Mg2+-Mg 2§ 
02 - -02 -  potentials since the long-range coulombic 
repulsion pushes like ions so far apart. 
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